二、选择题
1.C[解析] 2能被2整除,但它为质数,故A错误。4能被2整除,但4是合数而不是质数,故B错误。奇数都不能被2整除,能被2整除的数都为偶数。
2C[解析] 长方形有两条对称轴,A排除。等边三角形有三条对称轴,B排除。圆有无数条对称轴,D排除。等腰三角形只有一条对称轴,即为底边上的中线(底边上的高或顶角平分线)。
3.B[解析] 盐水有5+75=80(克),故盐占盐水的580=116。
4.C[解析] 由2a3+326=5b9可得,a+2=b,又5b9能被9整除,可知b=4,则a=2,所以a+b=2+4=6。
5.B[解析] 如果是自然堆码,最多的情况是:每相邻的下一层比它的上一层多1根,即构成了以5为首项,1为公差的等差数列,故可知21为第17项,从而这堆钢管最多能堆(5+21)×172=221(根)。
6.C[解析] 棱柱的一个侧面是矩形/ 棱柱的侧棱垂直于底面,而棱柱为直棱柱棱柱的侧棱垂直于底面棱柱的侧面为矩形。故为必要但不充分条件。
7.A[解析] 13为分数但不是有限小数,B排除。同样13也是真分数,但也不是有限小数,排除C。43是假分数,也不是有限小数,D排除。故选A。
8.C[解析] 对f(x)=xln(2-x)+3x2-2limx→1f(x)两边同时取极限为:limx→1f(x)=0+3-2limx→1f(x),即3limx→1f(x)=3,故limx→1f(x)=1。故选C。
9.B[解析] 由曲线过点(1,-3)排除A、C项。由此曲线过点(2,11)排除D,故选B。y=2x3-5显然过点(1,-3)和(2,11),且它在(x,y)处的切线斜率为6x2,显然满足与x2成正比。
10. B[解析] 由A与B为互不相容事件可知,A∩B=,即P(AB)=0且P(A+B)=P(A∪B)=P(A)+P(B)。故选B。
三、解答题(本大题共18分)
1.脱式计算(能简算的要简算):(4分)
[112+(3.6-115)÷117]÷0.8
2.解答下列应用题(4分)
前进小学六年级参加课外活动小组的人数占全年级总人数的48%,后来又有4人参加课外活动小组,这时参加课外活动的人数占全年级的52%,还有多少人没有参加课外活动?
3.计算不定积分:∫x1+xdx。(4分)
4.设二元函数z=x2ex+y,求(1)zx;(2)zy;(3)dz。(6分)
【参考答案】
三、解答题
1.解:[112+(3.6-115)÷117]÷0.8
=[32+(335-115)÷87]÷45
=(32+125×78)÷45
=(32+2110)÷45
=185×54
=92。
2.解:设全年级总人数为x人,则
x·48%+4x=52%
解得:x=100
所以没有参加课外活动的人数为100×(1-52%)=48(人)。
3.解:∫x1+xdx=∫x+1-1x+1dx=∫ dx-∫1x+1dx=x-ln|x+1|+C(C为常数)。
4.解:(1)zx=2xex+y+x2ex+y=(x2+2x)ex+y;
(2)zy=x2ex+y;
(3)dz=zxdx+zydy=(x2+2x)ex+ydx+x2ex+ydy。
四、分析题(本大题共1个小题,6分)
分析下题错误的原因,并提出相应预防措施。
“12能被0.4整除”
成因:
预防措施:
【参考答案】
四、分析题
参考答案:成因:没有理解整除的概念,对于数的整除是指如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a。概念要求除数应为自然数,0.4是小数。而且混淆了整除与除尽两个概念。故错误。
预防措施:在讲整除概念时,应让学生清楚被除数、除数和商所要求数字满足的条件。即被除数应为整数,除数应为自然数,商应为整数。并且讲清整除与除尽的不同。
五、论述题(本题满分5分)
举一例子说明小学数学概念形成过程。
【参考答案】
五、简答题
参考答案:小学数学概念的形成过程主要包括(1)概念的引入;(2)概念的形成;(3)概念的运用。
例如:对于“乘法分配律”的讲解:
(1)概念的引入:根据已经学过的乘法交换律,只是对于乘法的定律,在计算时,很多时候会遇到乘法和加法相结合的式子,如(21+14)×3。
(2)概念的形成:通过让学生计算,归纳发现乘法分配律。
比较大小:①(32+11)×532×5+11×5
②(26+17)×226×2+17×2
学生通过计算后很容易发现每组中左右两个算式的结果相等,再引导学生观察分析,可以看出左边算式是两个数的和与一个数相乘,右边算式是两个加数分别与这个数相乘,再把两个积相加。虽然两个算式不同,但结果相同。然后就可以引导学生归纳总结出“乘法分配律”,即(a+b)×c=a×c+b×c。
(3)概念的运用:通过运用概念达到掌握此概念的目的。
计算下题:①(35+12)×10
②(25+12.5)×8
学生通过运用所学的乘法分配律会很快得到结果,比先算括号里两个数的和再乘外面的数要快的多,从而学生在以后的计算中会想到运用乘法分配律,也就掌握了概念。
六、案例题(本大题共2题,满分共21分)
1. 下面是两位老师分别执教《接近整百、整千数加减法的简便计算》的片断,请你从数学思想方法的角度进行分析。(11分)
张老师在甲班执教:1.做凑整(十、百)游戏;2.抛出算式323+198和323-198,先让学生计算,再小组内部交流,班内汇报讨论,讨论的问题是:把198看作什么数能使计算简便?加上(或减去)200后,接下去要怎么做?为什么?然后师生共同概括速算方法。……练习反馈表明,学生错误率相当高。主要问题是:在“323+198=323+200-2”中,原来是加法计算,为什么要减2?在“323-198=323-200+2”中,原来是减法计算,为什么要加2?
李老师执教乙班:给这类题目的速算方法找了一个合适的生活原型——生活实际中收付钱款时常常发生的“付整找零”活动,以此展开教学活动。1.创设情境:王阿姨到财务室领奖金,她口袋里原有124元人民币,这个月获奖金199元,现在她口袋里一共有多少元?让学生来表演发奖金:先给王阿姨2张100元钞(200元),王阿姨找还1元。还表演:小刚到商场购物,他钱包中有217元,买一双运动鞋要付198元,他给“营业员”2张100元钞,“营业员”找还他2元。2.将上面发奖金的过程提炼为一道数学应用题:王阿姨原有124元,收入199元,现在共有多少元?3.把上面发奖金的过程用算式表示:124+199=124+200-1,算出结果并检验结果是否正确。4.将上面买鞋的过程加工提炼成一道数学应用题:小刚原有217元,用了198元,现在还剩多少元?结合表演,列式计算并检验。5.引导对比,小结整理,概括出速算的法则。……练习反馈表明,学生“知其然,也应知其所以然”。
2.根据下面给出的例题,试分析其教学难点,并编写出突破难点的教学片段。(10分)
例:小明有5本故事书,小红的故事书是小明的2倍,小明和小红一共有多少本故事书?
【参考答案】
六、案例题
1. 参考答案:分析建议:张教师主要用了抽象与概括的思想方法;李老师用了教学模型的方法,先从实际问题中抽象出数学模型,然后通过逻辑推理得出模型的解,最后用这一模型解决实际问题。教师可从这方面加以论述。
2. 参考答案:略。