《实际问题与反比例函数(第三课时)》说课稿
一、 数学本质与教学目标定位
《实际问题与反比例函数(第三课时)》是新人教版八年级下册第十七章第二节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。体现反比例函数是解决实际问题有效的数学模型,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题“的过程。
本节课的教学目标分以下三个方面:
1、知识与技能目标:
(1)通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题;
(2)通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念。
2、能力训练目标
分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理。
3.情感、态度与价值观目标:
(1)利用函数探索古希腊科学家阿基米德发现的“杠杆定律”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣。
(2)训练学生能把思考的结果用语言很好地表达出来,同时要让学生很好地交流和合作.
二、 学习内容的基础以及其作用
在17.1学习了反比例函数的概念及函数的图像和性质基础上,《实际问题与反比例函数》这一节重点介绍反比例函数在现实生活中的广泛性,以及如何应用反比例函数的知识解决现实生活中的实际问题。
本节课的探究的例题和练习题都是现实生活中的常见问题,反映了数学与实际的关系,即数学理论来源于实际又发过来服务实际,这样有助于提高学生把抽象的数学概念应用于实际问题的能力。在数学课上涉及了物理学力学的实际问题,运用到古希腊科学家阿基米德发现的“杠杆定理”,其本质体现的是力与力臂两个量的发比例关系,最后落实到运用数学来解决。通过学习,让学生进一步加深对反比例函数的运用和理解,更深层次体会建立反比例模型解决实际问题的思想,巩固和提高所学知识,鼓励学生将所学知识应用到生活中去。
三、教学诊断分析
本节课容易了解的地方是:杠杆是我们在生活中常常遇到的物理模型,利用杠杆定理容易建立函数关系式。
而我认为本节课有两个问题学生比较难理解:(1)是注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。在讲课时注意提醒学生关注实际问题的意义;(2)从函数的角度深层次挖掘变量的关系,在这一过程中学生逐渐建立运用运动变化的观点解释一些现象,实现从静到动的转变。授课时教师要按照学生的认知规律有层次、有步骤地引导学生分析解决问题。学生可以在我设计的问题的提示下来进行探究,学生若能发现其他的规律,教师应表扬,并让同学自己来讲解。
四、 教法特点以及预期效果分析
教法特点:
1、在研究性学习中应以问题情境和学习任务为驱动.教学过程中 ,教师不应把现成的结论和方法直接告诉学生,应以问题情境和学习任务为驱动,激发学生的探索精神和求知欲望.同时,又要营造一种宽松、和谐、积极民主的学习氛围,使每位学生都成为问题的探索者、研究中的发现者.
2、注重观察能力的培养.教学过程中应注重对学生观察的目的性、敏锐性和思辨性结合的培养 ,优化观察的对象,透过现象看本质,迅速从繁杂无序问题中捕捉最有价值的信息.此能力是发现问题和解决问题的关键.
3、合作意识和合作能力的培养.合作意识和合作能力是现代人才必备的基本素质之一.现代社会中,几乎任何一项工作都要许多人通力合作才能完成(如上述众多结论的获得) ,是否具有协作精神,能否与他人合作,已成为决定一个人能否成功的重要因素.教师要创设一切为学生合作的情境和机会,使学生学会与他人合作.
4、数学应用意识的培养.作为数学教师 ,我们的主要任务是,培养学生用数学的眼光去观察和分析实际问题,提高对数学的兴趣,增强学好数学的信心,达到培养创新精神和能力的目的.以上问题的解决过程,实际上就是要求学生作为主体去面对解决的问题,主动去探索、讨论,寻找问题解决的途径,用数学的方法和技术来处理实际模型,最终得出结论.
5、数学审美能力的培养.数学是“真”的典范 ,同时又是“美”的科学.教师应引导学生去发现美、体验美、感受美和创造美,这样能够使学生的思维得到锻炼、智力得到开发、情操得到陶冶和创新能力得到提高.它是鼓舞学生奋发向上,引导学生积极创造的重要因素.
预期效果分析:
(1)教学难点的突破
本节的难点在于“把实际问题利用反比例函数转化为数学问题加以解决”,课前预设通过“师生共分析——分析错处——再独立解题”的三个环节,以达到学生逐步掌握转化的方法。
(2)教学重点的落实
在探索实际问题与反比例函数时,教学活动设计了学生通过“现观察——后归纳——再比较——后小结”的循环上升的思维进程进行引导,在实际教学活动中学生通过自主探索能发现并归纳,使学生所学知识进一步内化和系统化。
总之 ,学生是具有学习的自主性、探索性、协作性和实践性.本节课是学生对科学探索与研究的初步尝试,但是它对学生今后的学习和15.1分式的意义说课稿
教材《上教版九年制义务教育课本数学七年级第二册》P51-P53
一、教材分析
1.地位、作用和前后联系。
本节课的主要内容是分式的概念以及掌握分式有意义、无意义、分式值为0的条件.它是在学生掌握了整式的四则运算、多项式的因式分解,并以六年级第一学期的分数知识为基础,对比引出分式的概念,把学生对“式”的认识由整式扩充到有理式.学好本节知识是为进一步学习分式知识打下扎实的基础,是以后学习函数、方程等问题的关键。
2.学情分析
我校初二年级学生基础比较差,学习能力较弱.但通过预初年级分数的学习,头脑中已形成了分数的相关知识,知道分数的分子、分母都是具体的数,因此学生可能会用学习分数的思维定势去认知、理解分式.但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化.为了学生能切实掌握所学知识,在教学中特别设计了几组练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理.
二、目标分析
教育目标的确立应该建立在学生的学习过程上,而学生对数学的学习应该包括三个层次:学习数学基础知识;形成一定的数学能力;完善自我的精神品格。结合我校学生的实际情况,我对本节课的教学目标确定如下:
² 知识技能目标
①理解分式的概念.
②能求出分式有意义的条件.
² 过程性目标
①通过对分式与分数的类比,学生亲身经历探究整式扩充到分式的过程,初步学会运用类比转化的思想方法研究数学问题.
②学生通过类比方法的学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识.
² 情感与态度目标
① 通过联系实际探究分式的概念,能够体会到数学的应用价值.
② 在合作学习过程中增强与他人的合作意识.
三、教学方法
1.师生互动探究式教学 以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初二学生的求知心理和已有的认知水平开展教学.学生通过熟悉的现实生活情景,发现有些数量关系仅用整式来表示是不够的,引发认知冲突,提出需要学习新的知识.引导学生类比分数探究分式的概念,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.
2.自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中形成分式概念、掌握分式有意义、分式值为0的条件.在活动中注重引导学生体会用类比的方法(如类比分数的概念形成分式的概念)扩展知识的过程,培养学生学习的主动性和积极性.
3.设计理念.根据《上海市中小学数学课程标准(试行本)》中明确指出以学生发展为本,坚持全体学生的全面发展,关注学生个性的健康发展和可持续发展。
本节课的教学,是在学生已有的分数知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比思想、特殊与一般的辩证唯物主义观点.
4.教学重点与难点:重点:分式的概念.难点:理解和掌握分式有意义、值为0的条件.
突破点:由于部分学生容易忽略分式分母的值不能为0,所以在教学中,采取类比分数的意义,加强对分式的分母不能为0的教学.
四、教学过程分析
1、教学流程图2、流程说明:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.本节课的教学设计思路:
² 创设情景 从实际问题引入,提出表示数量关系仅用整式是不够的,体现了数学源于生活.
² 形成概念 类比分数知识,得到分式概念. 由分式的概念,类比分数得到分式有意义的条件.
² 反馈训练 为了更好地理解、掌握分式的基本概念,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了2个由浅入深的例题.例1是熟悉分式有意义的条件,其变式是训练学生掌握分式无意义的条件;例2是如何求分式的值为0.同时配有三个由低到高、层次不同的巩固性练习,体现渐进性原则,希望学生能将知识转化为技能.
归纳小结 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.