四川省科学城一中秦美蓉
1. 对教材地位与作用的认识
在高中数学教学中,作为数学思想应向学生渗透,强化的有:函数与方程思想;数形结合思想;分类讨论思想;等价转化及运动变化思想。不是所有的课都能把这些思想自然的容纳进去,但由于“曲线和方程”这一节在教材中的特殊地位,它把代数和几何两个单科自然而紧密地结合在一起,因而上述思想能用到大半,这不能不引起我们教师的重视。“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“依形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,用代数的方法研究几何问题。”曲线与方程”是解析几何中最为重要的基本内容之一.在理论上它是基础,在应用上它是工具,对全部解析几何的教学有着深远的影响,另外在高考中也是考察的重点内容,尤其是求曲线的方程,学生只有透彻理解了曲线与方程的含义,才算是找到了解析几何学习得入门之路。应该认识到这节“曲线和方程”得开头课是解析几何教学的“重头戏”!
2. 教学目标的确定及依据
(大纲的要求)通过本小节的学习,要使学生了解解析几何的基本思想,了解用坐标法研究几何问题的初步知识和观点,理解曲线的方程和方程的曲线的意义,初步掌握求曲线的方程的方法.所以第一课我在教学目标上是这样设定的:
1).了解曲线上的点与方程的解之间的一一对应关系,领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理;
2).在形成概念的过程中,培养分析、抽象和概括等思维能力;
3)会证明已知曲线的方程。
本节课的教学目标定在“初步掌握”的水平上,但“初步”绝不等同于“含糊”,它反应在学生的学习行为上,即要求学生能答出曲线与方程间必须满足的两个关系,才能称作“方程的曲线”和“曲线的方程”,两者缺一不可,并能借助实例进一步明确这二者的区别。知识的学习与能力的培养是同步的,在具体操作上结合图形分析与反例,来辨析“两个关系”之间的区别,从认识特例到归纳出曲线的方程和方程的曲线一般概念,因而在形成概念的过程中,培养学生分析、抽象、概括的思维能力.会证明已知曲线的方程就能更进一步的理解曲线和方程概念的含义并为下节课求曲线的方程打基础.
3.如何突破重难点
本小节的重点是理解曲线与方程的有关概念与相互联系,以及求曲线方程的方法、步骤.只有深刻理解了曲线与方程的含义,才能真正掌握好求曲线轨迹方程的一般方法,进一步学好后面的内容.曲线和方程的概念比较抽象,由直观表象到抽象概念有相当难度,对学生理解上可能遇到的问题是学生不理解“曲线上的点的坐标都是方程的解”和”“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系各自所起的作用。有的学生只从字面上死记硬背;有的学生甚至误以为这两句话是同义反复。要突破这一点,关键在于利用充要条件,函数图象,直线和方程,轨迹等知.识,正反两方面说明问题.
本节课的难点在于对定义中为什么要规定两个关系(纯粹性和完备性)产生困惑,原因是不理解两者缺任何一个都将扩大概念的外延.
4.对教学过程的设计
今天要讲的“曲线和方程”这部分教材的内容主要包括“曲线方程的概念”,“已知曲线求它的方程”、“已知方程作出它的曲线”等。在课时安排上分为3个课时进行教学,具体的课时分配是:第一课时讲解“曲线与方程”和“方程与曲线”的概念及其关系;第二课时讲解求曲线的方程一般方法,第三课时为习题课,通过练习来总结、巩固和深化本节知识。如果以为学生不真正领悟曲线和方程得关系照样能求出方程,照样能计算某些难题,因而可以忽视这个基本概念得教学,这不能不说是一种“舍本逐末”得偏见。
在教材中,曲线和方程这一概念是随着知识的讲授而不断深化,逐步为学生所理解,因而教材中从直线开始,多次,重复地阐述,这说明其重要性.同时也说明理解它,掌握它确实需要一个过程.数学本身是很抽象,把数学和实际问题相结合才能激发学生的学习兴趣,真正达到素质教育的要求。根据以上考虑,确定了这节课教学过程的基本线索是:实际问题引入,提出课题→运用反例,揭示内涵→讨论归纳,得出定义→集合表述,强化理解→知识应用,反复辨析。
教材的编写也往往体现着教法.,例如,本节一开头说“我们研究过直线的各种方程,讨论了直线和二元一次方程的关系。”学生已经有了用方程(有时用函数式的形式出现)表示曲线的感性认识,在本节教学中充分发挥这些感性认识的作用。从人造地球卫星运行的轨道等生动形象的实际问题引入,引起学生的兴趣和好奇心以及对数学的应用有了更高的认识,更激发他们进一步学好数学的决心。(具体……)提出课题。运用学生熟知的知识,1)求线段AB的垂直平分线方程和2)作出方程y=x2的图象作为引例,从曲线到方程,从方程到曲线两方面入手分析了曲线上的点和方程的解之间的关系,为形成曲线和方程的概念提供了实际模型,但是如果就此而由教师直接给出结论,那就不仅会失去开发学生思维的机会,影响学生的理解,而且会使教学变得枯燥乏味,抑制了学生学习的主动性和积极性,接着用反例来突破难点。通过反例1)直线去掉第三象限部分,则方程y=x的解为坐标的点不都在曲线上,以及2)改方程为,那么曲线上就混有不满足方程的点坐标就此揭示“两者缺一”与直觉的矛盾,通过举反例和步步追问使我要的答案逐步明了,从而又促使学生对概念表述的严格性进行探索,学生自已认识曲线和方程的概念必须要具备的两个关系,培养学生分析,归纳问题的能力,自然得出定义。并且把这个关系板书到黑板上,以示这就是这节课的重点。为了在重难点有所突破后强化其认识,又用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。
然后通过运用与练习,纠正错误的认识,促使对概念的正确理解,通过反复重现,可以不断领悟,加强识记。所以安排了例1,例2(见课件)目的也在于帮助学生正确理解概念,通过解题辨析“两个关系”,实现本节课的教学目标,为此题目中的“曲线”和“方程”都力求简单,由此得出点在曲线上的充要条件。
曲线是符合某种条件的点的轨迹,为了下节课“求曲线的方程”的教学,安排了例3(见课件)证明曲线的方程,增加学生的感性认识,由于教材上有严谨的证明过程,让学生阅读并总结证明已知曲线的方程的方法和步骤,上升到理论上,可以培养学生独立思考,阅读归纳的能力。为了让学生更深入的理解这节课的主要内容,通过4个变式引申检查他们的掌握程度,但难度不能太大,我选择这样几个练习:(略)简单评讲后小结本课的主要内容,进一步强化“曲线和方程”概念中两个关系缺一不可,只有符合关系1)2)才能进行数与形的转化。由于下节课的内容是求曲线的方程,特地安排了一个思考探索题。
5对学生学习活动的引导和组织
教案的设计与教案的实施往往有一定的距离,本节课有着概念性强,思维量大,例题与练习题不多的特点,这就决定了整节课将以学生的观察、思考、讨论为主,通过提问,举例,启发,互动完成教学,在具体操作上比较灵活,视学生的具体情况而定,把握学生的思维规律于数学思想的基本方法。例如,在概念教学中引导学生看反例,通过正反对比的方法,当学生观察了例1回答不清为什么,可以举出几个点的坐标作检验,这就是”从特殊到一般“的方法:或引导学生看图,比比划划,这就是“从直观到抽象”的方法。只要启发方法符合学生的认识规律,学生的认识活动就会顺利展开,而且在认知的过程中训练了探索的能力。强化数形结合、化归与转化的数学思想方法,完善学生的数学的结构,让学生动手、动脑,以及观察、联想、猜测、归纳等合理推理,鼓励学生多向思维、积极思考,勇于探索,从中培养学生合情推理能力,数学交流与合作能力以及主动参与的精神。